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INTRODUCTION

Finite difference methods are today one of the important tools for

approximating the solutions of time-dependent problems governed by systems of

partial differential,equations. This is ture for example for a wide spectrum

of pure initial value and mixed initial-boundary value problems in the field

of fluid-dynamics. The widespread use of finite difference schemes to solve such

problems has increased rapidly since the early 1950's, in response to the

increased capabilities of the electronic computers which execute the vast amount

of calculations needed in the applications.

Since that time there have also been extensive developments in the analysis

of finite difference schemes. A prime example of this has been the maturation

of the mathematical theory needed to handle numerical approximations to linear

systems of initial value problems. The concept of stability of a difference

scheme, expressing a continuous dependence of the scheme-solution on its initial

values, plays a major role in the above mentioned theory. The centrality of

this concept follows from the Lax equivalence theorem (see for example [13,

Chapter 3) which assures the convergence of a numerical computation carried out

by a stable finite difference scheme consistent with a well-posed initial value

problem.

Besides the pure initial value problems mentioned abovewe are most

interested in approximating the solution of mixed initial-boundary value problems,

where the numerical approxtmation must include a special boundary treatment to

fulfil the boundary conditions imposed on the problem. Furthermore, since
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practically all the various schemes are solved in a finite domain of the grid,

it follows that numerical boundary conditions must be added also in the case of

pure initial value problems so that the solution can be uniquely determined. It

follows that in all cases (pure initial value and mixed initial-boundary value

problems), the overall approximation is composed of a basic scheme applied at

inner grid points and a (different) additional algorithm which is applied locally

at the boundary. The additional boundary treatment which determines uniquely

the scheme-solution is sometimes an artificial one and does not necessarily

reflect the boundary conditions (if any) of the original differential system,

so it may cause an instability. Indeed it is known (see for example 113, Chapter

6] [11, Chapter 17]) that even if the basic scheme is stable, a careless

numerical boundary treatment may render the total computation unstable.

These considerations lead us into the area of the stability analysis of

approximations to hyperbolic initial-boundary value problems. One of the most

important contributions in that area which will serve us as a general reference

on the subject, is the 1972 paper by Gustafsson, Kreiss and Sundstrftu [6)

which is a generalization of an earlier paper by Kreiss (1968) [8]. The analysis

in the 1972 paper rests on a new stability definition (Definitions 3.2 and 3.3 in

[6)) which like the stability definition for approximations to pure initial

value problems, is obtained by a discretization of a corresponding vell-posedness

condition of the original differential equation (see for example [9)). This new

stability condition reflects the influence that the boundary values have on the

numerical solution,* and as in the case of pure initial value problems, it serves as

a sufficient condition for the convergence of a (compatible) consistent
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approximation 15]. The main result of Gustafsson et. al.[1 provides an

algebraic criterion which enables one to determine whether a given approximation,

consisting of a basic scheme together with corresponding boundary conditions,

is stable or not. Roughly speaking, according to this criterion we have stability

if (and only if) no linear combination of powers of roots satisfying a

characteristic equation which is determined by the basic scheme, may serve as a

non-trivial solution of some characteristic boundary constraints. Thus, in order

to assure stability by applying the above stability criteria, one must first

study the behavior of roots of the corresponding characteristic equation. This

characteristic equation is a polynomial equation with N x N matrix coefficients,

N denoting the order of the original approximated system, and whose degree

depends on the number of spatial mesh points that the basic scheme rests on.

Studying the behavior of the roots of such an equation as part of applying the

above stability criteria for general difference schemes, is a complicated task

which cannot always be carried out fully analytically. Therefore, examples

given in the literature of verifying stability for initial-boundary approximations,

are in most cases restricted to specific scalar 3-point schemes.

This fact motivates us to look for simpler sufficient stability tests.

Scheme-independent stability tests which are exclusively dependent on the

boundary conditions, are particularly useful for such purpose. Tests of this

sort have two main advantages: first, their being independent of the basic

scheme relieves us of the technical difficulties associated with the computation

of roots of the characteristic equation and hence the procedure of checking

stability becomes much shorter; and secondly, the acquired stability is not



restricted to a specific approximation but instead is valid for a family of basic

schemes which are characterized by some general property.

The search for such scheme-independent stability criteria for difference

approximations to hyperbolic initial-boundary value systems is the main subject

of the dissertation.

As a model problem for the general linear case we consider the hyperbolic

system ut = Au x+ F which together with appropriate initial and boundary

conditions is well-posed in the quarter plane x >, 0, t >, 0. In prescribing

these appropriate boundary conditions it turns out that one must distinguish

between inflow and outflow (characteristic) unknowns, where the inflow boundary

values have to be determined by reflection of the outflow ones. Based on this

distinction we first introduce in Chapter 1 a general method of numerical boundary

treatment of arbitrary degree of accuracy, such that the entire vector

approximation is stable if and only if the scalar components of its outflow part

are; thus reducing the stability question to that of a scalar (outflow) problem.

Therefore from that point on our discussion concentrates on the general scalar

approximation as it is represented in the second part of Chapter 1.

In Chapter 2 we begin the stability study, drawing on the stability theory

of Gustafason et. al.[6) which we briefly survey in the first section of that

chapter. The main stability criterion in that theory is given in terms of

eigenvalues and generalized eigenralues of the problem. Then, upon reintroducing

these concepts in a less formal manner and operating under the four basic

assumptions corresponding to those which were made in [6), we may apply the above

criterion [6, Theorem 5.1) which states that a given initial-boundary approximation
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is stable if and only if it has neither eigenvalues nor generalized eigenvalues

outside the unit disc.

In the second section of Chapter 2 we follow the analysis in [6] which

leads to the formulation of the main stability criterion as a corresponding

determinant condition. Then, by using in the above analysis, a suitable

representation of the general form of (generalized) eigenvalues of the problem,

we derive an explicit interpretation of the determinantal stability criterion

mentioned above. This result, which seems to be of independent interest, is

essential for the general stability analysis which is carried out afterwards

and is needed to obtain the stability criteria of the desired type.

Chapter 3 -- the main one in this work -- discusses scheme-independent

stability criteria. The boundary conditions considered are of translatory

type, i~e., determined at all points in the boundary domain by the same

procedure. We first show in Section 3.1 that when dealing with such bound.-zy

condition, the determinental stability criterion obtained in Chapter 2 is

equivalent to a corresponding scalar condition. This scalar condition plays

the central role in proving the scheme-independent results at which we are aiming.

In the remainder of Chapter 3 we state our main results, namely, sufficient

scheme-independent stability criteria. These results are obtained upon making

two quite non-restrictive assumptions complementing the first four already made

in Chapter 2. It is shown that these new additional assumptions are necessary for

our scheme-independent results to be valid, and simple scheme-indeqendent tests

verifying whether a given problem meets these assumptions, are provided. We study

the caues of both one-level and multi-level boundary treatments. In the (somewhat
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simpler) first case, the well-known result (see for example £31, £71) stating

that two-level stable dissipative schemes together with (one-leveled)

extrapolated outflow boundary values remain as conditionally stable, follows

easily. We show however, that this widely used result is no longer valid when

dealing with multi-level dissipative schemes involving more than two time-steps,

unless further restrictions are made on them. In studying the wide class of

multi-level boundary treatments, we will employ the tools of dissipativity and

the von Neumann condition usually used only in connection with the basic scheme.

The stability criteria in the multi-level case are given in terms of these

concepts which are well-understood from the theory of pure initial value problems

and whose validity can be easily checked. We prove that an arbitrary stable

dissipative scheme when complemented by outflow boundary conditions satisfying

the von Neumann condition, remains stable We also show that if the outflow

boundary conditions are dissipative, then the entire approximation is stable

independently of the interior scheme (be it dissipative or a non-dissipative one).

Finally, in Chapter 4, we utilize the above scheme-independent stability

criteria to verify the stability of various (outflo%) translatory boundary

conditions. The examples considered indicate that an arbitrary stable dissipative

scheme whose outflow boundary values are translatorily computed by oblique

extrapolation, by the Box-Scheme or by the stable weighted Euler scheme, constitutes

a stable approximation. We also study boundary conditions which are generated

by the (right-sided) lmplicit and stable explicit Euler schemes. Both boundary

treatments are found to be unconditionally stable in the sense that when augmenting

arbitrary stable basic schemes, they always maintain stability. We close Chapter

- - .
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4 by considering approximations to the two space dimensional problem

Ut = aux + bu in the quarter space x > 0, t 0, -- < y < -. The stability

ara.lysis in that case is based on Fourier transforming with respect to y

with dual variable n), thus obtaining a one space dimensional problem of the

type analyzed in previous chapters with n-dependent coefficients.
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1, THE DIFFERENCE APPROXIMATION TO THE HYPERBOLIC SYSTEM

1.1. The reduction to the scalar problem

Consider a first order hyperbolic system of partial differential equations

(1.la) au(x,t)/3t = A~u(x,t)/ax + F(x,t)

in the quarter-plane x > 0, t > 0, with initial conditions

(l.lb) u(x,0) - f(x) , 0 s x <

(I.) (N)
Here, u(x,t) E (u (x,t),...,u (x,t))' is the transposed vector of unknowns,

A is N x N non-singular constant coefficient matrix and
F(x,t) - (F (1)(x,t),..,F (N)(x,t))', f(x) - (f(l)(x),...,f (N)(x))', are

N-dimensional vector functions.

The hyperbolicity of the system (l.la) implies that A can be diagonalized

by a similarity transformation, hence we may assume without restriction that A

is alteady given in its diag6nal form

(l.lc) A = (A+; A- . (a, .".0 O, A+= "a. .. 0.

A 0 °% 0 N

We are interested in the uniqueness of the solution for the system (1.la).

For that reason, let us consider the partition
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u -- (u ( 1 ) _ ,u( ) u + (u ( L+I) _ ,u (N)),

corresponding to that of A. Since the characteristic lines associated with the

N-L components of u +(x,t) go outside from the region x,t > 0, it follows that

u (x,t) which is carried by these characteristics, is uniquely determined by the

initial values f(x) in the whole quarter-plane x,t ; 0. Because of the

direction of its characteristics, u+ (x,t) is considered as the outgoing part of

the solution u(x,t).

The L characteristic lines associated with u-(x,t) have a positive slope

and hence go into the quarter-plane x,t >, 0. Therefore, in order that u-(x,t),

which is considered as the ingoing part of the solution V(x,t), be uniquely

determined in the quarter-plane, it is necessary to specify its values on the

boundary line x = 0. Thus, for the solution of (l.la) to be uniquely determined,

we prescribe boundary conditions of the general form

(1.1d) u-(Ot) = Su+(Ot) + g(t) , t > 0,

which determine the missing ingoing boundary values by reflection of the outgoing

ones. Here, S is an Lx(N-L) constant matrix and g(t) = (g(l)(t),...,g(L)(t))'

is an L-dimensional vector function.

To solve the initial-boundary value problem k-.1) by a difference approximaticn

we introduce a mesh-size h E Ax > 0, At > 0 such that A = At/Ax - constant.

Using the standard notation v (t) =_ v(vht), we approximate (1.1a) by aV

consistent, two-sided multi-level 'scheme
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s

(1.2a) Q 1 v (t+At) = Z--Qv (t-oAt) + At'FV(t), v 1,2,...,
C=O

with initial values

(1.2b) v (aAt) = f (aAt), v > -r+l, a = O,1,...,s.

Here

Q% AJaE v =  v+l
J=-r

are difference operators with matrix coefficients depending on A and on A.

In order to determine uniquely the solution of (1.2), we must specify at

each time step the r boundary values v (t), V = 0,-l,... ,-r+l. For the

approximated outgoing unknowns v+(t) (v (VL+l(t),. .. v (N(t))' we do it by

boundary conditions of the form

T

S(~ v(tAt Ya:j S(U)Y(t-aAt) + At*F (t ,p 0-i..

(1.3)

S(1 J= W j , a " -I,0,i, ... , 9, T > -i,

(ii)
where C are (N-L) x (N-L) constant matrices depending on A and on X.

In that way, we maintain the property shared by the analytic system (1.1), which

is the unique determination of the outgoing unknowns in the whole quarter-plane

independently of the Ingolng ones.
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In (1.3), T + 1 (T , -1) denotes the number of time levels needed for

the computation of v (t+At). The case T -1 is considered to be the case

of one-level boundary conditions where the first term on the right side of (1.3)

is taken to be zero.

For the computation of the boundary values of the approximated ingoing

Sv(1)(L),... ,v (L)(t))' we use the analytic boundary conditionVV V

(l.4a) vo(t) = SV(t) + g(t),

together with r-1 additional conditions of the form

(1.4b) v(t) = t Djv+(t) + g (t) = -1,-2,... ,-r+l.
J=-r+l

Here, D 14 are Lx(N-L) constant matrices and the g (t) are L-dimensional

bounded vector functions depending on h and on g(t). In other words, as in

the analytic case, the computation of the ingoing boundary values is based on

reflection of the outgoing ones.

It is well-known that using conditions of the general form (1.3), one can

achieve at the boundary, arbitrary degrees of accuracy. We note that this is

true also for conditions of the type (1.4b). Indeed, if accuracy of order d

is desired we can use the Taylor expansion of a smooth solution for (1.1)

d j  d + l

U~-(--W Eu-(O,t)] + $h
J-0 J! axi
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and by the differential system (l.la) and (l.d) we get for a typical spatial

derivative in the above expansion

.d j

- 3i + d
xj  (O,t) = (A-) - i-(O,t) = (A-) [S--u C0t) + Kt'd(t)

aja ati dti

S J ai + I= (A-) [S(A ) - u (0,t) + ig(t)].
dt

j

Thus, (1.4b) follows upon approximating aJ/3xju+(0,t) by linear combinations

of u (t),...,u (t) of the right accuracy.
-r+l q

The difference approximation is completely defined now by the (basic) scheme

(l.2a) together with the boundary conditions (1.3), (1.4) and we raise the

question of its overall stability which means, according to Definition 3.3 in

[6], that the discrete solution v (t) could be estimated with the aid of the

inhomogeneous terms F (t), v > -r+l, g(t) and g (t), p = -1,-2,...,-r+l.

For that purpose, we split the scheme (l.2a) into its inflow and outflow

parts s

(1.5) Q7lV-(t+At) = 7--Q v-(t-At) + At.F-(t), v = 1,2,...,
0=0

s

(1.6) Qv +(t+At) = Qv (t'-oAt) + At-F (t), V= 1,2,...,

which are coupled through the boundary conditions (l.4). Here, -, Q are
Q0

difference operators which are given by

Q;A;E +'" A+Ea A - ( +

j-r -r Aa
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- +

Thus, Q , Q denote respectively the partition of the difference operators

Q into their inflow and outflow parts, according to the dependence of the matrix
- +

coefficients Ajo on A and A .

In order to assure the stability of the entire approximation, both of its

parts - the outflow part (1.6), (1.3) and the inflow part (1.5), (1.4) - have to

be stable. We note that the outflow approximation (1.6), (1.3) is independent of

the inflow values, while the inflow approximation (1.5), (1.4) depends on the

outflow part only to the extent that the outflow computations provide the

inhomogeneous boundary values in (l.4b).

Let us consider first the stability of the self-contained outflow approximation

+ (1)(1.6), (1.3). Since the difference operators Q, are expressed in terms

of A and C(U) which in turn depend on the diagonal matrix A+ , it follows

that the outflow problem splits into N-L independent scalar approximations.

Thus, +he outflow problem is stable if and only if its N-L scalar component

approximations are.

Now, suppose the outflow approximation was found stable, then it remains to

determine whether the same holds true for the inflow approximation (1.5) , (1.4).

Since the outflo-- valups determined by the stable outflow computation are bounded,

then the summation t D v + (t), which appears on the right side of (l.1;b) is a
J=-r+l U

bounded term, independent of the inflow computation. Thus, the right side of

(1.4b) consists of two bounded terms, which are independent of the inflow

computation and therefore, for the purpose of determining stability, it may be

considered as an arbitrary inhomogeneous term that provides the ingoing boundary

values.

eV
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Recalling that the difference operators QY defining the basic inflow

scheme are expressed in terms of A JF, which in turn depend on the diagonal

matrix A, it follows that the inflow problem splits into L Independent scalar

initial-boundary approximations the boundary values of which are determined by

some inhomogeneous bounded terms. Thus, the inflow problem is stable if and

only if its L corresponding scalar components are.

Concerning the stability question of the initial-boundary approximation

which is discussed above, it is obviously necessary to require the stability of

its basic scheme should it be applied to the pure initial-value problem,

< V <v00

Assume that the basic inflow scheme indeed satisfies the above necessary

stability requirement. Then, as we shall see later on, it follows that each

scalar component of the inflow approximation whose boundary values are

determined by an arbitrary bounded term, is unconditionally stable, [T], [10),

and we therefore obtain the unconditional stability of the entire inflow part,

We conclude that the entire approximation is stable if and only if its

scalar components are. Furthermore, according to the remark above, it is

sufficient to consider only the outflow ones. Thus, in both cases - either

the inflow case or particularly the outflow one, it is the scalar approximation

the stability of which we have to look for, so hereafter we may restrict our

discuss.ton to the scalar approximation, bearing in mind that our forthcoming

results go over to the general vector case.

________M_
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1.2 The scalar approximation and its solvability

Consider the scalar hyperbolic initial-boundary value problem

(1.7a) 3u(x,t)/3t = aau(x,t)/ax; a = constant 0 0; u(x,0) = f(x); x,t > 0

Whereas the outflow problem, a > 0, is well-posed in L2(0,), the inflow problem,

a < 0, is not, unless suitable boundary conditions are given at x = 0. Therefore,

we shall examine (l.7a) together with

- no boundary conditions for the outflow problem, a 0;

(1.Tb)

- boundary conditions u(0,t) = g(t), t > 0 for the inflow problem, a < 0.

To approximate (1.7) numerically, we set a time step At > 0 and a mesh

width h E Ax > 0, a grid function v'(-t) - v(vh,t), v = 0, +1, ±2,..., and a
V

consistent multi-level finite difference scheme

3

Q_1v (t+At) = T1 Qav (t-oAt); v a 1,2,...,t > sAt
0=0

(1.8)

Q k.-._ aj E j ; .,s; Ejv = v V+J *

J=-r ~V~+

Here, r,p > 0 and s are natural numbers and the a j's are constants which

depend on the coefficient a and the fixed ratio A - At/Ax = constant.

We note that the consistency of scheme (1.8), i.e., its being at least
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first order accurate, may be characterized by the following two equations:

zero order accuracy requirement

(1. 9a) t a - -

and the additional requirement for first order accuracy

(1. 9b) jL -1~* = 2. a - Xa Z c+l) tL a
t 4 , :t . JaC
j=_r a, O J=-r a =O j-r

The equalities (l.9a), (2.9b) may be written respectively, in the following

compact form

(i.10a) a (Z O -,

(1.1ob) J I(z).2- a -Xa J--rt (z) -

where the scalar functions aj(z) are defined by

a

(1.11) aj(z) --Z-z a3 a + . -r s J s0=0 a~ j_ r. <p

and following [6), [8), we shall operate under

40=0 1; (Assumption 5.5 in [6)).

?r(2). a(Z) 0 , it 1.

"N TI
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It is clear that under Assumption I, the vector coefficients.

(a-ri ar,0 ,. ars)' does not vanish, and since r > 0 it follows that in

order to assure the uniqueness of the solution of (1.8), we have to supply its

discrete values at the boundary points x , v = 0, -1,...,-r+l. These will be

defined via boundary conditions of the form

T

S1v (t+At) Z: S(U)v (t-aft); p = 0,-1,..,-r+l, t > rAt,-ia = 0  a l

(l.12a)

P J--O Ej  ; G = -1,0,...,, T > -1.

Here, the c s are constants which depend on a and X, q is a natural
jo

number and T+l, T > -1, indicates the number of previous time levels which we

need in order to compute the boundary values at the next time level, t+At. We

note that the one-level boundary conditions namely T = -1, is a special case of

(l.12a) whereupon (l.12a) takes the form

(1.12b)S(j)v (t+At) = 0, V - 0,-l,...,-r+l, t a 0.

It is clear that the computation of the boundary values via the r boundary

relations (1.12), the linear independence of whicb is assured by taking

(1.13) C(U) 0 0 - 1 ,-,. ,r+l.

is done in the specified order, namely, p 0

Now, the basic scheme (1.8) together with the boundary conditions (1.12)
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completely define the finite difference approxiriation, whose numerical solution

is initiated with the aid of' the initial values given by

(1.14) v V(oAt) = f (aAt) , v >, -r+1, a = 0,1,... ,s.

Following L61, we define the solvability of the difference approximation as

the property of being able to uniquely obtain bounded grid values at t+At by

applying (1.8) and (1.12), thus making use of' the discrete values which were

already computed at pre'%ious time levels.

To ensure solvability, we consider the space 2(xW, of all the grid

functions V = {v satisfying fjj ~ 2 < Co. Upon defining respectively
V v=-r+l v-~

an inner product and a norm by

2
(v,w)x = Ax-/ vNWV , WI (w,w) X$

v=-r+l

X (x) becomes a Hilbert space, a discrete analogue to L 2 (0,M). Now, denote by

W9v >, -r~l, the discrete values to be computed at the next time level, t+At

and rewrite the approximation (1.8), (1.12) in the form

(115 T~ v -1,2,...; S( O~W 7 V -i 0,-l,... ,-r+1,

where T (T TYC L W,. stands for the linear combinations of' previously
VO nr+1 2
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computed values, as given on the right sides of (1.8) and (1.12).

The solvability of the approximation, which will be henceforth assumed

throughout this work, is thus cast in the following form.

ASSUMPTION II (Assumption 3.1 in [6] ).

There exists a constant K0 > 0 such that for every T E t2 (x) there is a

unique solution w E L2 (x) for (1.15) with

~2 2y 2

We note that the solvability condition is automatically fulfilled in case

that the basic scheme (1.8) is explicit, i.e., QI = constant-I. Concerning

the solvability in the general implicit case, the following result due to Osher

[12] (based on Strang's earlier paper [16]) holds.

LEMMA 1.1.

Let the index r0 , O*r0 r be defined by

(1.16) r 0 a max(jla_,_ 1 0 0, 0 * J % r}

and let Ki, J = 1,2,... ,m be the m roots counted according to their

multiplicities, of

(1.17) Q 10) a 2_a, = 0,

which are lying inside the unit disc 0 < I1 I (1.

___- [ -
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I. (Theorem I in [12]). The following three conditions are necessary and

sufficient for solvability:

(lo~a) Q 1 (ei % # 0 , W

(l.18b) m r 0

(1.18c) the associated problem with (1.15) which consists of the basic scheme

(1.19a) Q-1 1w = t j,zW V+j = 0, V = 1,2,...,

J=r0

together with the inhomogeneous boundary conditions

(_l)W) = ' , i = 0,-l,...,rl(1.19b) S T

has a unique solution in 2 (x).
-2

II. Let the basic scheme (l.19a) be a right-sided one,i.e., r0  0 0. Then

(1.20) Q1 (,) , 0 , 0 - loc .H 1

is a sufficient condition for solvability.

In particular solvability follows for explicit basic schemes, where

we have r0 = 0, Q_1(K) F constant.

I i _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __I
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PROOF. By (l18a) we may apply the Argument Principle for Q1 (K) on the

unit circle iK! = 1, obtaining that (l.18b) is valid if and only if

71

(27r) - l.J d[argQ 1I(ei )] 0. Hence, conditions (1.18) are exactly those of
-W

Osher ((d) (e) and (g) in [12]) and by Theorem I in [12] they are equivalent

to solvability.

To prove the second part of the lemma we first note that (1.20) implies

(1.18a). Also (1.20) implies that QI(K) = 0 has no solutions inside the

unit disc, i.e., m = 0, and since r0 = 0 we have (1.18b) as well. Finally

since by (1.20) QI(K) = 0 has no solutions in the closed unit disc, it

follows that the most general solution of (1.19a) in t 2(x) must vanish, i.e.,

wV = 0, v = 1,29.... In addition the boundary values w,, = 0,-l ,.. .r+l,

can be uniquely computed by applying (1.19b) in the successive order

= O,-l,.. ,-r+l, so we get (1.18c). Having (1.18a), (1.18b), (1.18c), part

I of the lemma completes the proof.

"MOW"',-----



2. STABILITY ANALYSIS

2.1. The stability definition and Gustafsson's et. al. Main Theorem [61

In a similar way to the above definition of the space E 2 (x), we introduce

the discrete spaces £2 (t) and Z2 (x,t), which become Hilbert spaces upon

defining respectively an inner product and a norm by

(v,w)t = At- v(aAt)w(ot) ; w2
a=O

(v,W)x t = At.Ax.ZZ v (aAtwV (aAt) ; !!w1! 2  = (ww)

a=O v=-r+l x,t x,t

Now, let us write the difference approximation (1.8), (1.12), in the

operational form max(t s)

(2.3) G-1v(t+At) = i G v(t-oAt); v(t-oAt)ER 2 (x),

where G,:1 2 (x) --> 2(x) are linear bounded operators determined by the basic

scheme (1.8) together with the boundary conditions (1.12). Here, the solvability

assumption II, is expressed by the fact that G_l has a bounded inverse in the

whole of 12(x).

DEFINITION 2.1 (Definition 3.3 in (6)).

Consider the inhomogeneous approximation associated with (2.1)

(2.2) Glw(t+At) - > G w(t-a.t) = AtF F - (F}Ezr1 W

together with vanishing initial values fv(aAt) O. The approximation (1.8),
'I7
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(1.12) is said to be stable if there exist constants K0 > 0 and a0 > 0,
such that for every FE(x) and every a, a > mO, the solution w = {w

of (2.2) satisfies the estimate

0

(3 c - O . 1e-act 2 + ( c 0  2"2.-t 2
(2.3) ,.,,.-1 W Oltt r..+l -

K }t
-2)P- r+i At e- Ft + ;e-x (t+At'F,2}

It is of course understood that before turning to investigate the stability

c'f the initial-boundary approximation (2.1), one has to assure first the stability

'f scheme (1.8) should it be applied to the pure initial-value problem, -<x<-.

ASSUMPTION III (Assumption 5.1 in [6]).

The scheme (1.8) is a stable approximation for the Cauchy problem, --<v<-.

It is well-known (see for example [13, Section 4i) that Assumption III,

may be characterized by the two following conditions:

(W) The von Neumann condition; namely, the z-solutions for the eigenvalue

problem p

(2.4a) QW(i ) - 0z1l (it) 0, Q(i ) -

c=O0 J=-r

which may be rewritten in the equivalent form

(2.4b) _ Wj(z)e J& 0; a3 (z) - izcy + a -- ~~0=0 a -
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satisfy 1z = z(&)I < 1 for KI si

(ii) The solutions for the eigenvalue problem (2.4) which are lying on the

unit circle, are simple, i.e., for z0 = zo0(E) , Izol = 1, satisfying (2.4),

we have

(2°5) '(z)e jz=z 0 dz

In addition we require

ASSUMPTION IV (Assumption 5.4 in [6)).

Denote by z ( ) the solutions fer (2.4). Then, the scheme (1.8) is

either dissipative, i~e.,

1z 1E~ i 0 1E1 W

or, it is nondissipative, i.e.,

Operating with our scalar approximation under Assumptions I-IV, enables us

to use the results obtained by Gustafsson et. al.[6]; in particular, we are

interested in their main result, characterizing the stability of an initial-

boundary approximation. The remainder of this section is therefore devoted to

a brief survey of some of the points concerning this matter.

Consider the z-eigenvalue problem -- the associated resolvent equation --

given by

(2.6) G(z) 0, G(z) - -- o,
a=0



I|
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• z~t /Atvvr,
which follows upon substituting a grid solution of the form v V(t) = Z

into the approximation (2,1).

DEFINITION 2:2.

A complex number z0, is said to be a spectrum-point of the approximation

with associated eigenvector 9, 9 1 0, if there exists a sequence of vectbrs

( ,J,2, , E L2 (x), satisfying

(2.7) G(z0 )O(J) -LL , *(j) 0..___ 9; j ->

We note that the eigenvector 9, associated with the spectrum point z0, is

not necessarily in L2 (x). In case the vector 9 is indeed in L2 (x), the point

z0  is an eigenvalue of the approximation; otherwise, when 9 t t2 (x), z0  is a

generalized eigenvalue of the approximation. In either case, the boundedness of

the operator G(z 0 ) implies that the corresponding eigenvector 0 satisfies

(2.8) G(z0 ) = 0.

It is not hard to see that in order to assure the stability of the difference

approximation, we have to assure first that the necessary condition of Ryabenkii-

Goudunov is to be fulfilled, namely, that the approximation has no eigenvalues z

with Iz( > 1 (Lemma 4.l in (6)). Indeed, the existence of such an eigenvalue

zO, Izo > 1, with associated eigenvector 9, 9 E 12 (x), implies that the grid

function

0

6 .) ( ) '/a * ,. -'l

44I
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is a solution for the approximation (1,8), (1.12), with initial values
v ( ,ot)= v a -r+l, a = 0,1,...,s, a solution which exponentially diverges

0

with the refinement of the grid as At -> 0. Evidently, such a divergence

cannot be allowed within the limits of any stability definition and in particular

definition 2.1, (Theorem 3.1 in [6]).

The main result in [6) strengthens the necessary condition mentioned

above to be also sufficient.

THEOREM 2.l. (Theorem 5.l in [6)).

The difference approximation (1.8), (1.12) is stable, if and only if it has

neither eigenvalues nor generalized eigenvalues z, with Izi > 1.
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2.2, A determinantal stability condition

In this section, we intend to express the stability condition which was given

in Theorem 2.1, in a suitable algebraic formulation.

For that purpose, we consider the characteristic equation, associated with the

basic scheme (1.8),

(2.10) P(z,') a (z) K = 0,
J=-r

whose r+p roots K. counted according to their multiplicities, are continuous

functions of z.

The behavior of these z-dependent solutions, plays a central role in

determining the set of the spectrum points of approximation (1.8), (1.12).

The following lemma summarizes the results which were given in [6 1 and [8 1

concerning those solutions, for any solvable approximation.

LEMMA 2.1.

Consider the solvable approximation (1.8), (1.12).

I. (Lemma 5.2 in [6)). When scheme (1.8) satisfies the von Neumann condition,

then the r + p solutions of its associated characteristic equation (2.10)

are split for Izi > l:

k with ici(z)l > 1, and the rest r solutions with 0 < IKi(z)1 < 1.

II. (Lemma 2 in [8]). When scheme (1.8) is of dissipative type and it

additionally satisfies

(2.11) t a (z-.i,) 0 0 . 0 ,
Jo-r 

J

then the above splitting 1roperty is maintained for IzI 1 1, z 0 1.

..'I ,*...,, r~.nm- hmnnn
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PROOF The proof of both parts of the theorem is based on the idea of identifying

the z-values for which the characteristic equation (2.10) has no K-solutions on

the unit circle, ie,, K = e i , 0 n I ir.

We first note, that the solutions K.(Z), Izi > 1 of (210), are exactly

those which solve

(2.12) K.P(z,K) aj(z)Kj~r =

J=-r

indeed, multiplying the characteristic equation (2.10) by the factor K
r  as in

(2.12), does not yield additional zero solutions, K = 0, since by

Assumption I,

Kr. P(zK),I o = ar(z) ~ 0, IzI 1.

Now, concerning the first case, the von Neumann condition implies that the

characteristic equation (2.12) has no K-solutions on the unit circle for all

z-values with Izi > 1, since by (2.4b) we have for Izi > 1

ir i&)ijrE#0 C
(2.13) erP(ZKe=) a (z)e ) # 0 0 Id .

j-r

Concerning the second dissipative case, a slight change is needed in Kreiss'

original proof [8, LemA 2) in order that the splitting property will be valid

for our mulit-level scheme (1.8).

In this case, the dissipativity property, which indicates that the solutions

z(&)az(K-e'E) of (2.12) satisfy

1 0 T T
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implies that for Izj >. I, we have

irE. t~~) E

(2.15) e .P(z,K=ei) - aj(z)ei( j+r) # 0 < w -

j=-r

It therefore remains to check the single point E = 0.

By continuity considerations, it follows from (2.14) that

(2.16) lz(&=O)l s< 1.

We recall our hypothesis (2.11), which implies that the solutions

z z(&) of (2.12) for K = ei J&=O satisfy

(2.17) z( 0) e 0 < < W

Thus, by (2.16), (2.17), we obtain for IzI a 1, z 1

(2.18) eir .P(zUe )c - 0a.(z) 0.

Combining (2.15) and (2.18) yields that (2.13) is valid in the second

case, for all the z-values satisfying Izi a 1, z 0 1.

Now, the solutions, K i(z), for (2.12), are continuous functions of z.

Therefore, the number of solutions Ki  satisfying 0 < IKi(z)I < 1, is

independent of z, as long as jzj > 1 in the first case, and Izi 4 1, z # 1,

in the second one. By letting z tend to infinity, 12 -- * , it follows

Ii 4NIT.



- 30 -

th&t this number is equal to the number of solutions K inside the unit disc of

r t jJ+r

(2.19) KrP(jzj --- -,K) H K .Q1 (K) aj- Jc = 0.- J=-r 'I

In order to find how the solutions of (2.19) are split we denote, as in

(1.16), by r0 , 0 s r 0 s r, the maximal index for which a-r0_ # 0, and

rewrite (2.19) in the form

r-ro t  aj K Jro . 0.

J=-r 
0

Then, the number of solutions , 0 $ lK[ < I of (2.19), consists of r-r0

zero solutions, K = 0, and, by Lemma 1.1 which is valid under our solvability

assumption, r0  additional solutions of

t a,,.l K j 
. 0.

J=-r 
0

Hence, there exist r solutions inside the unit disc, and p outside it, and

the result follows.

REMARK 2.1. We note that in the course of proving Lemma 2.1, we didn't need

Assumption I, except to assure that multiplying the characteristic equation

(2.10) by the factor K , as given in (2.12), does not yield additional zero

solutions, K = 0.

REMARK 2.2. To assure the splitting property for Izi 4 1, z 0 1 in the

dissipative case, then according to the second part of the above lemma,

4 i
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condition (2 11) has to hold. We note that this condition is actually part of

the splitting property since violation of (2.11) means that for some

0 < I(00I s n, we have

P(z=eiO ,K=L) = a (z =e i O) = ;
J =-r

that is, if (2.11) is violated then for some z with Izi = 1, z # 1,

the characteristic equation (2.10) has a root (K=Il) on the unit circle.

Moreover, condition (2.11) is generally necessary in the sense that it is

independent of dissipativity. Indeed, let

v (t+ht) = t ajOv (t) , V = 1,2,...,

be any two-level dissipative scheme which is (at least) zero order accurate,

i.e., by (1.10a) we have

(2.21) t a- -r( ' l ) - 1 -  "  "a 'J= ' O a

jo-r Jjn..rao

Now, let s be a positive integer and consider the solvable scheme

(2.22) vV(t+At) -tu a JovV(t-sht) , v - 1,2......

This scheme is dissipative yet (2.l1) is violated since by (2.21) we have

for z - wj, wj - 2wiJ/(s4+l) j 1
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(2.23) ra (Z).z F 1-z- S+l) 1 - a 0.

- ) J=-r J '0 I z= J=-r J,0

The last example (2.22), which shows the necessity of the additional condition

(2.11), is of course a degenerated one. When we turn to examine either the two-

level or the three-levnl schemes, i.e., s = 0 or s = 1, which are apparently

the ones used most often, we find that the additional condition (2.11), may be

omitted, or, at least may be weakened. This i 7 the content of the next lemma.

LEMMA 2.2.

Let the scheme (1.8) be accurate of (at least) order zero (that is, even

the consistency, (1.10), is not necessarily required).

I. For two-level scheme, s = 0, we have

(2.24) t aj(z=e i  ) 0 , 0 <hI i( .

J=-r

II. For three-level scheme, s = 1, which satisfies

(2.25) t a (z=-l) 0,
jmr

(2.24) still holds.

Thus, the additional condition (2.11) is automatically fulfilled in the

two-level case, and has to be verified at the single point z w -1 in the three-

level one.

PROOF. When scheme (1.8) is of (at least) zero order accuracy, (1.lOa) implies

++i I
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(226) P(z=l,K=l) = I aj(z=l) = 0.
J=-r

Now, in the two-leveied case, the characteristic ftunction

(2.27) P(z,Kul) - Q_I(K=1) - z-1.Q0(K=1),

is a polynomial of tirst degree in the argument z-1, and, by (2.26), its only

root is z = 1; hence

P(z=e i(°,K=l) =- t a ( z = e i qp) 0 0 , 0 < JIl <

J=-r

thus, (2.2h) holds.

In the three-leveled case, the characteristic function

(2.28) P(Z, =l) -Q 1 (,:Ic)-Z-1.Q(,=l) - z-2Q,(=l)

-1
is a polynomial of second degree in the argument z , whose coefficients are

real, and by (2.26), z- , 1, is one of its two roots. Hence, the other root

of (2.28) is real, and therefore

(2.29) P(z=eiO, K=l) -Ia (zei) 0 0 < I < 
1

Now, combining (2.29) with our hypothesis (2.25) which merely asserts

that (2.29) is valid also for I wPI U i, gives the desired result.

~ ~a~z
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We return now to the characteristic equation (2.10), the solutions of

which were discussed in the Lemma 2.1.

Denote by Kt = K (z), the distinct, z-dependent solutions of the characteristic

equation (2.10)', each with corresponding multiplicity m. = m (z). Since our

basic scheme (1,8) is always assumed to satisfy the von Neumann condition

(Assumption III), then by the splitting property stated in Lemma 2.1, we may

distinguish between two groups of solutions of (2.10):

the group of the inner solutions, K Z(z), l.<.n, which are characterized by

0 < I~j(z)I 1 , Jzf > I;

and the group of the outer solutions, containing the rest of the solutions, and

characterized by

IK: z )l > 1 , zl >. 1.

Note that bg cntinuity, the Inner (outer) solutions are well-defined for IzI > 1,

where the milder inequalities IJKI $ 1 (jKI'I > 1) are valid.

Now, let z with jzi > 1 be given. If z is an eigenvalue or a

generalized eigenvalue of the approximation, then there exists a corresponding

(nontrivial) eigenvector f such that G(z)# = 0; thus by the definition of

G(z) in (2.6), 9 must first satisfy the basic scheme associated with the

resolvent equation a

(2.30) (Q 7 - ' zQo)4 a 0, a 0 1.2,3...
o"'0

471. A -m ,=== . --- , Mlmw----~m
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Equation (2.30) is an ordinary difference equation with constant coefficients;

hence, the most general form of an eigenvector 0 satisfying (2.30) is given by

n Mk-l

(2.31) -= 7_ _ kPk(V)Kv , v , -r+l.
Z=l k=O

Here, K. = K (z), are the distinct inner solutions of the characteristic equation

(2.10) each with corresponding multiplicity m = m (z);. P v,k() are arbitrary

polynomials in v with deg[P ,k(v)] = k; and a Z k  are free parameters to be

determined, where by Lemma 2.1, their precise number is

n

2- = r.
Z=1

REMARK 2.3. We note that the splitting property mentioned in Lemma 2.1, implies

that for IzI > -, the inner solutions, K Z (z), satisfy the strict inequality

IKZ(z)I < 1, hence, the eigenvector 0 given in (2.31) is in Z2 (x). Thus,

the existence of a generalized eigenvalue z, is possible only for z lying on

the unit circle, IzI = 1. Furthermore, operating under hypothesis (2.11), this

possibility is reduced in the dissipative case, to the single point, z = 1, since

the splitting property in this case is maintained also for IzI = 1, z 0 1.

We now make a particular choice of the polynomials P (,k() in (2.31),

which later proved useful. We choose

P (V) = Kk'k (V

R.,k L k

so that the most general solution of (2.30) which is used as eigenvector of the

approximation, is of the form

- -
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n m -

(2.32) Z Z ,k! (k)C v , v >. -r+l.
L~1 k=O k kt

To determine the parameters a£,k, we recall that being an eigenvector of

G, V must also satisfy the boundary conditions

(2.33) (G(z)f), = 0 , ' - 0,-I,... -rl.

The operator G(z) is defined with the aid of the operators G., whose operation

at the boundary points is given by (1.12); hence (2.33) becomes

T
(2.34) ( - '- - 1 S 0, 0 o -,-I,... ,-r+l.

- O=0 0 ' •,

Inserting (2.32) in (2.34), we finally obtain

n m l () T

(2.35) L _ )2 c 1 -2.....z_OlcIV3! )"''C 0

Z.1 k=0 J= l a0o jo ik

U - 0,-1,...,r ,

which constitutes a linear homogeneous system of r equations in the r

unknowns a£,k' Clearly, 0 is an eigenvector of the approximation, if and only

if not all the a 1,k  in (2.35) vanish, that is, (2.35) has a nontrivial

solution.

At this point, we associate with the boundary conditions (1.12) a set of

rational boundary-functions

41_ _ _ _ _ _ _ _ _ _I
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(2.36) R (z,K) () c ]0 - . ,r

SZ cj=0 0=0 j

which are uniquely determined by the boundary coefficients c Upon defining

the scalar functions

q

(2.37a) S (, ) () -3 ,0,. )T
J=O

the associated boundary-functions may be rewritten as

(2.3Tb) R (z,K) = S(1)(K) - Xz-0-  S (U)(K), u 0,-i.... -r+l.

Since
q T

- Z: I [c 1 Zzo c()ik!( k )+iK
3Kk J=O 0 is j

the system (2.35) is cast in the form

n M. C

(2.38) k a Z,k = , = 0,-i,... ,-+l.

It follows that the coefficient matrix of this system, which we denote by

(2.39a) D = D(z; K i ... ,%K ;m l ,... ,m)

is of the form
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D =[B(z,ic 1 ,M I), B(Z,K 2' M2 ),.. ,B(Z,K n m ,

where B(z,K , 1 t n are rxm~ dimensional blocks given by

(2.39c)

R (,) R-1(Z,c) H- (z,c)
0

R_ 1 (Z,t) R1 r(Z,ic) R1r(z'IC)

Let zic with I a begvn n e ,=KL() ,b h

eacha with mutpict-l mX()

Wyerell that $staieigetr of the approximation sue if and only if 238

has anontrievale soutionrie i ils iglr wthi ive4;so s aplyn
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Lemma 2,3 we finally obtain an algebraic formulation of the stability condition

of the type which we look for.

THEOREM 2.2.

The difference approximation (1.8), (1.12) of the initial-boundary value

problem (1.7) is stable, if and only if for eryz jzi >, 1, with distinct inner

solutions K,~, 1 * 2. < n, each with multiplicity m

Theorem 2.2 is simplified when the boundary conditions are of one-level type,

(see (1.12b)), ie.,

(2.4o) Sh v (t+At) = 0, V, = 0,-i,... ,-r+l.

-1l

In this case the associated boundary-functions (2.37) are

and the matrix coefficient D in (2.39) is given by

(2,41a. D =D(Ili.***K n ;m1 ,... ,m) n F B(ac,ml),...,B(K n'mn)]

with



00

(2. 4D1o R 0(K) RO0(K) R 0(K:) --

RP--i) R-1( ) I

B(mc,mt) = d L -i1
dL

R_ (Kc) (K)K

IK= K

The matrix D in (2.41) no longer depends explicitly on z, but via the inner

solutions K. = K£ (z) and their multiplicities m. = m£(z), hence Theorem 2.2

becomes

COROLLARY 2.1.

The difference approximation (1.8), (1.12b) is stable, if and only if for

every z, IzI ; 1 with distinct inner solutions K£, 1 s . < n, each with

multiplicity m£

det[D(K 1 ,... ,Kn ml,.... mn)) n 0.

F. --
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3. SCHEME-INDEPENDENT STABILITY CRITERIA

3.1. Translatory boundary conditions - he determinant condition

In the previous chapters, we dealt with boundary conditions of the general

form (1.12), where each boundary value, v (t+At), is determined by a linear

combination of computed grid values which is dependent on the position of the

boundary value to be computed.

In this chapter we start discussing translatory boundary conditions; that is,

the same linear combination is used to compute the boundary values

v (t+At), j = O,-l,.... ,-r+l, independently of their position. In other words,

the translatory case is characterized by applying a repeated procedure, where

the computation is done by translating the same linear combination in the usual

specified order, namely, v = 0,-l,... ,-r+l. The translatory boundary conditions

are thus cast in the form

T

S 1 v U(t+At) = _S av (t-aAt), p a 0,-l,...,-r+l, t > xAt

(3.1) c
r L CJoEJ

, JO

where the coefficients c are no longer dependent on v.

We note that when the discrete boundary domain is reduced to the single point

x0, such as in the case of the widely used 3-point schemes (i.e., r = p - 1), the

computation at the boundary is of translatory type by definition.

Hereafter, we concentrate on searching for conditions assuring stability in

,. qI~'tl..'?, - -- --. , . . . .... . ..



the translatory case,

The rational boundary-functions associated with (3.1) are

q

(3.2a) R (z,K) = L c (z),, = O,-i,...,-rl,

where the scalar functions c (z) are given by

T

(3.2b) c (Z) = - Z:Z-oj J ' 1 
-  0 < J . q.

In particular, for p = 0 we get

q T

(3.3a) R0 (Z,K) = >- cW(z) = s-1 (K) - Z Z -0-1 S(K),

J=Oa

where the scalar functions Soa(K), are given by

q

(3.3b) Sa(K) = C a-- -1O,.. ,.

By (3.2a) and (3.3a), ve have

R P(Z,K) E o(zI) , 0 ( 0,-l,.. ,-r+1,

so the r x r matrix

D "D(z, I,..., ,n;ml,... , n  - B- ,ml,.,',nm)

' Mn)

)po
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of (2.39) is given by the rxr. dimensional blocks

HR(z
K

)  R-0 (Z'C) R0 (zK)

K_ R 0(Z,Kc) K R 0(t) m -1 0cR(zK

B(Z,K = -

-r+l R -r+l Z, K-r4IR0 (zK)
K_ R0 (Z'i K R 0(,) 0

The fact that D is determined now by the single boundary-function R0(z,i)

enables us to significantly simplify the stability condition given in Theorem

2.2 by replacing its determinantal criterion with the following scalar condition.

THEOREM 3.1.

The difference approximation (1.8), (3.1) of the initial-boundary value

problem (1.7) is stable, if and only if for every z, jzl > 1, with corresponding

distinct inner solutions K., 1 .< I. n, we have

(3.4) R0(z,K) 0, L = 1,2,...,n.

PROOF. Suppose there exists Zo, Izol >, 1, with corresponding inner solution

K = Ko(Z), JKI 0 1 violating (3.4) by satisfying

K£ 0

Then the left column of the block B(zo 0 ,mLo) is identically zero, hence the
00

-I..z 'h T .' - " , , .. ... . .. .



matrix D is singular and by Theorem 2.2, the approximation is unstable.

Conversely, suppose (3.h) is valid, and we want to prove stability,

where by Theorem 2,2 it suffices to show that for every z, HI :t 1, with

distinct inner solutions K, 1 z I s n, each with multiplicity m, 1 j L n,

we have

det[D(z;K I ,., .,n) #M

For that purpose, let

KN 0(Z, K

0 a- 1 1Io 0 , 1 )]

(3.5) Q 0

m -1
a n nK 0(ZKn ]

DK n
_ n

n1

be a vanishing linear combination of the rows of D. The vector relation in (3.5)

consists of the r scalar equations

0

a- EUR0 (z[, A - 0 ; 0 * k s m-l, 1 s i s
~ k 1 0Ji=-r+l 3

which we write as

0

(3.6) -- (Jr+1%(ZK Q K) Z a 0; 0 k i m , 1 f t n.
k 0ulr+l U L
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By our hypothesis (3.h), the left member in the above brackets satisfies

K[r+i R0(z, I ) 0 , £. n.

Thus, expanding ty Leibniz' rule and using induction on k >, 0, we find that

the right member in (3.6) has vanishing derivatives at K - K£e i.e.,

d [k [- . r M 0 ; 0 t k * m -l, 1 t t n.

dK k =ri, KKi

We conclude that the polynomial

0

T(K) S 1 K r+a-i

which is of degree r-l at most, has r roots; K., 1 .<t * n each with

multiplicity m£. Hence, T(K) E 0 and the coefficients a must vanish. By

(3.5), therefore, the rows of D are linearly independent, so the matrix is

nonsingular and stability follows by Theorem 2.2.

As was realized in the previous section, if (3.1) is reduced to the one-

level case

(3.7) S 1 v (t+At) = i cJ,_vIj (t+At) U O' o 0,-i,...,-r+l,
J=O

then the associated boundary-functions

q
Ru(k) = j K"  -= U (K), o ,-i, .,-r+l,

J0 ,-. ) "'"

-mmmmmmmm~ mm mmm -mImm mmlm mmm mtm mm m
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cease to depend explicitly on z, and Theorem 3.1 provide us with

COROLLARY 3.1.

The difference approximation (1.8), (3.7) is stable, if and only if for every

z, zi >, 1, with corresponding distinct inner solutions K.. 1 % t < n, we have

R 0(c ) - S I (c ) 0 0, 1 = 1,2,...,n.

Finally, we note that in the case r = 1, which was mentioned in the beginning

of this section as translatory one by definition, the matrix representation of the

results which obtained in Theorem 2.2 ax.d Corollary 2.2, reduced respectively

to the scalar results given in Theorem 3.1 aznd Corollary 3.1. Indeed, in this

case, the matrix D is the scalar boutndary-function R0
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3.2. Scheme-independent stability criteria

The stability criterion given in Theorem 3.1, involves the both parts which

constitute the approximation (1.8), (3.1); these are the translatory boundary

conditions (3.1) which generate the boundary-function R0 (z,K), and the (basic)

scheme (1.8) which induces the characteristic equation (2.10) whose z-dependent

solutions K, = I(z) are used as test points for the stability of the approximatior.

Our main aim in this section is to provide stability criteria which do not

take into account the (basic) scheme (1.8), but instead, are given solely in terms

of the boundary conditions. In such a way, we shall be able to answer the question

whether a given boundary treatment violates the stability of any basic scheme

(as an approximation to the pure-initial problem-Assumption III).

REMARK 3.1. We emphasize that in the scheme-independent stability analysis

carried out below, it is always assumed that the (basic) schemes considered obey

the four basic assumptions, Assumptions I-IV, which were originally made in [6].

The larger part of this section discusses the (somewhat simpler) outflow case.

We recall that these are the outflow scalar components, the stability of which

we have to look for in order to assure the stability of the entire vector

approximation. The end of this section is devoted to the inflow case, where

the results follow easily, merely by updating the results previously obtained for

the outflow problem.

We start by recalling Lemma 7 in [8) which discusses the behavior of the

inner solutions K (z) in the neighbourhood of the point z = 1.

EMM 3,1. (Lemma 7 in [8])

Consider the consistent (basic) scheme (1.8) as an approximation to the outflow,
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a > 0, (inflow, a > 0) problem (1.7). Then, its associated characteristic equation

(2.10) has exactly one outer (inner) solution K E K(z) which satisfies

K(z=I) = 1.

PROOF. The consistency condition (l.10a) implies that z = 1 is a solution of

the eigenvalue problem (2.4b)

t aj(z)e ijE lzl,& = 0,J=-r

and by part (ii) of Assumption III (see (2.5)), z a 1 must be a simple solution,

i.e.,

(3.8 ) a (z-l) 0 0 [ d[ __

j r 
dz

By the consistency conditions (l.10a), (l.10b) and by (3.8) we have

(3.9a) P(zK)Iz=1 .=l= a iz)1 .=l 0,

(3.9b) --= Ja (z) = -a' a'(z) o 0

. J--r JZml J--r - [X 1i

Hence, we may apply the Implicit Function Theorem obtaining that in the

neighbourhood of z = 1, the characteristic equation (2.10) can be uniquely

solved for K as a differential function of z; that is, there exists a single

root-function of (2.10), K S K(z), which satisfies

(3,10m) .(,-i) , 1.
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Applying the consistency condition (l.10b) once more (see (3.9b) yields

Pz I) .= -Aa'Z a3(z) = -Xa '_z,K)3J=-r az zz=f=l

hence the root-function K(z) determined above satisfies

(3.10b) ic'(z) z=l = - L- / l/xa dz I

Combining (3.10a), (3.10b) implies that for z = 1+6, 6 > 0 sufficiently

small, we have

(z) = l+(a)- 1 6 + M(62)

Hence, the inequality

(311) l(z)I > 1 (K(z)l < 1) , a > 0 (a < 0),

holds in the right real neighbourhood of z - 1, and since the basic scheme

(1.6) is assumed to satisfy the von Neumann conditions then by Lemma 2.11 this

inequality holds for all z with Izi > 1. Thus K(z) is an outer (inner)

solution according to the positive (negative) sign of the coefficient a

which completes the proof.

In the course of our discussion about scheme-independent stability criteria,

we introduce two additional assumptions complementing the first four already made.

We will show that the new assumptions are necessary for stability and provide

7r-_ _ __ _ _ _ _ _
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scheme-independent algebraic tests to verify their validity.

To introduce the first new assumption, let the scalar functions a (z) and

c (z) be as in (1.11) and (3.2b), respectively.

ASSUMPTION ,V.

The z-function a(z), given by

(3-12a) aI aj(z)I I i zjJ=-r J=O

which may be rewritten in the form

(3.12b) A(z) FIP(ZK) + 0

satisfies

(3.12c) A(z-e i ) 0 0 , 0 < .

REMARK 3.2, We note that Assumption V is not scheme-independent, since the

function A(z) in (3.12) depends on both-on the coefficients a j(z) determined

by tne basic scheme (1.8) and on the coefficients c j(z) determined by the

boundary conditions (3.1). However, it should be pointed out that although

Assumption V depends on both parts of the approximation, its validity can be

assured by considering only one of these two parts. That is, (3.12c) is valid

if either the scheme-dependent condition

5-,- -' --. . . " . . . .
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(3.13) P(z=e ikc=l) - a (z=e i 0 ) # 0 , 0 PI ,
J=-r

ur the boundary-dependent condition

(3.14) 0 (z = e i=l) c ( z = e  0 , 0 < I(1 IT
J=0

holds- In particular, one may use (3.14) as a scheme-independent test to verify

the validity of Assumption V.

Verifying the validity of Assumption V becomes much simpler when the basic

scheme or the boundary conditions are either two-leveled or three-leveled, i.e.,

when s or T obtain the values 0 or 1. This is the content of the next lemma.

LEMMA 3.2.

Each one of the following four -nMditinns is sufficient for Assumption V to hold:

(i) - The basic scheme (1.8) is two-leveled, i.e., s = 0.

(ii) - The boundary conditions (3.1) are two-leveled, i.e., T - 0, and are

accurate of order (at least) zero.

(iii) - The basic scheme (1.8) is. three-leveled, i.e., s a 1, and in addition we

have
(3.15a) P(z=-I,oc=I) -- t a(z=-l) 0 0.

ja-r

(iv) - The boundary conditions (3.1) are three-leveled, i.e., T = 1, are

accurate of order (at least) zero and in addition we have

(3.15b) R0(z-l,Iul) Et i(z--l) 0 0.
J-O

..........
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Thus, roughly speaking, Assumption V is automatically fulfilled in the

two-level case, and has to be verified at the single point z = -1 in the three-

level one

PROOF. As explained in Remark 3.2 above, each one of the two conditions - either

(3.13) or (3.14) is sufficient for Assumption V to hold; thus the result of

our lemma follows directly from Lemma 2.2.

Indeed, in cases (i) and (iii) Lemma 2.2 implies that condition (2.24)

or equivalently (3.13) holds and hence Assumption V is valid. In the remaining

cases, (ii) and (iv), the accuracy hypothesis of the boundary conditions enables

us to follow the proof of Lemma 2.2 replacing the functions a (z) by c (Z)

and obtaining that condition (3.14) holds. Hence, Assumption V is valid also

in these cases.

We turn now to discuss scheme-independent stability criteria and let us start

by studying schemes of dissipative type. The important point in the stability

analysis of such schemes is the fact that generalized eigenvalues z with IzI > 1

may exist only at the single point z - 1 (see Remark 2.3). Recalling also

Lemma 3.1, we find that for izI > 1 all the corresponding inner solutions

K (z) are lying inside the unit disc, i.e., IK,(z)I < 1. Indeed, this argument

is the basis for our next theorem discussing scheme-independent stability criteria

for any dissipative (basic) scheme.

THEOREM 3.2.

Consider the basic scheme (1.8) of dissipative ty together with translatory

boundary conditions as an approximation to the outflow problem (1.7).

For one-level boundary conditions, Y *-1, w_ have

(I) -th' difference approximation (1.8), (3.7) is stable if for every K with

1__
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3,6) ROc) C 0
J=O

For multi-level boundary onditions, T > -1, we have

.11) - the difference approximation (1.8), (3.1) is stable for every z with IzIjl

and every K with 0 < JiK < I,

q

3.17) R0 (zK) - i --c(z)O 0.
J=O

PROOF. Take an arbitrary z with Izl ; 1, and let cL(z), 0 < IK E(z)l < 1,

be any corresponding inner solution, so that

(3.18) P(z,Ic) - t a,(z) j = 0.
t J=-r z

In order to assure stability, it suffices, aecording to Theorem 3.1, to show

that

(3.19a) R'((Z,K ) 0.

In particular, concerning the one-level case t " -1,, the boundary-function R0

does no longer explicitly depend on z and, 16W suf -icient condition (3.19a)

is cast in the form (see Corollary 3.1).

(3.19b) R0(K 0.

• .-. , - . . -. .. ..
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For the case where the inner solution K z(z) is inside the unit disc, i.e.,

0 < IKZ(z)l < 1, (3.19a) and (3.19b) follow respectively by hypothesis (3.16)

and (3.17).

Let us consider then the case where the inner solution K (z) is lying on

the unit circle, i.e., KI(z) - ei , 0 1 RI -

Our assumption of the dissipativty of the basic scheme means that the z-

values which satisfy (3.18) with inner solution of the form K = ei ,

0 < I&I s r, obey the inequality

3.20) IZ(Ktei )I - 0 'I E s

Hence, the only possibility to satisfy (3.18) by an inner solution of the form

K=e 
i  and by z with IzI > 1, is the possibility of Kt= ei

where by (3.20), continuity implies that the corresponding z-value satisfies

(3.21) Iz(KI,,e i,I 0 )I 1 1.

We therefore conclude that it remains to verify (3.19) in the case where K,=1

and the corresponding z-values are lying on the unit circle, z = ei O

0 0 4 1.

Now, since the dissipative scheme (1.8) is consistent with the outflow

problem (1.7), then according to Lemma 3.1, K a 1 is elcluded as an inner

solution corresponding to z a 1. For the remaining z-valuesz=e ivO< I(J7t,

which may be taken into consideration, we have by (3.18) and by Assumption V

-- -- qtr_.- ---- -- _ __ _ __ _ ___......_ __ _ __ _ __ _
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(3.22) R0(Z=e ,-p =)I = A(z-e i ) 0 0 o < c

That is, (3.19) is valid also in this case, and stability follows.

The first part of Theorem 3.2 discussing one-level boundary conditions,

provides a relatively simple stability criterion, as it depends on one variable, K.

Thus for example, m-order extrapolated boundary values

(3.23) (I-E)m+l v = 0 , = ,-,...,-r+l

can be easily checked as satisfying (3.16), since we have

R0(K) - (1-) m+ l 0 0 , 0 < lad < 1.

In particular, in the case of a two-level basic scheme, where the validity

of Assumption V follows by Lemma 3.2, we obtain the following well-known

result [3), [7].

COROLLARY 3.2. (Theorem 5.2 in [7)).

The two-level dissipative scheme (1.8) together with extrapolated boundary

values as given in (3.23) constitute a stable approximation to the outflow

problem (1.T).

In the last corollary we required that the basic scheme will be two-leveled

in ordere tc assure the validity of Assumption V. When we turn to extend Corollary

3.2 to the general multi-level case, we find that Assumption V is indeed a

• -- m - -___m_-, m m m|
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necessary one, as shown by the following example:

Consider the three-level 5-point dissipative basic scheme

(3.24) v (t+At) = [I-IEE-I)2 II-E-I) 2]v (t-At) + Xa(E-E' )v (t),

v = 1,2,..., Xa s 1-C, E < 1,

which follows by adding the dissipative term - i-) 2(I-E-1 ) V(t-At), to the

usual Leap-Frog scheme, see [11, Section 9]. For both schemes, the associated

characteristic equation has exactly one inner solution K = K(z), satisfying

((z=-l) = 1 (see [6, Lemma 6.2]). Now, when the scheme is complemented by

m-order extrapolation of the boundary values Vo(t),v_l(t), the approximation

becomes unstable, as follows from Corollary 3.1, since we have

= m+l

R[=(1-K) 1  = 0.

This instability is explained by the fact that the approximation fails to satisfy

Assumption V. Indeed, in the general case of one-level boundary conditions

which are at least zero-order accurate, such as the m-order extrapolation, we hpv,

by (1.lOa)

i-c z).(J=O J J=O ,'-i

Hence, Assumption V, which becomes

_ _ _ _ _ _ _ _ _ _ _ _I
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(Z) E -- aj(z)] i 0 ; z = el , 0 , lPl r
J-- -r

is violated by our scheme (3,2h) at the point z -1 since

--o0.

We note that by Lemma 3.2, z = -1 is indeed the only possible point for a

three-level scheme to violate Assumption V.

It was already mentioned, that the stability criterion (3.16) provided in

Theorem 3.21 which discusses one-level boundary conditions, is relatively a

simple one, since it involves only one variable , K. Concerning the wide

family of multi-level boundary conditions, the stability criterion provided by

Theorem 3.21- in (3.17), is more complicated since it involves two independent

variables, z and K.

This motivates us to look for z-independent alternatives to Theorem 3.211, for

both, dissipative and particularly non-dissipative schemes, complemented by

multi-level boundary conditions. This matter will occupy the remainder of our

disscusion about the outflow problem.

We start by introducing the boundary-scheme associated with the boundary

conditions (3.1)

S 1 vV(t+At) z IScav (t-oAt), v a 0
arO

(3. 25)

a- oJJM
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which is generated by extending the definition of the boundary values in (3.1),

v , = 0,-1,... ,-r+l, to all grid points x., -M < V < W.

Since the boundary conditions (3.1) were assumed to be multi-leveled, i.e.,

T is non-negative, it follows that the boundary-scheme (3.25) is well-defined

as a difference scheme, whose values are computed by advancing in the direction

of the time-axis.

As was realized in Section 2.2,the splitting property described in lemma

2.1 was the key in investigating the solvable (-Assumption II), scheme (1.8),

and we would like this result to be applicable also for the boundary-scheme

(3.25). For that reason, we require the solvability of the boundary-scheme

by making the following analogy of Assumption II.

ASSUMPTION VI.

The boundary-scheme (3.25) is solvable; that is, there exists a constant

K0 > 0, such that for every Y E 2 (x), there is a unique solution, w, w E t 2 (x)

for

(3.26a) S_l~ 1 wV ,1 V v -r+l,-r+2,...,

with

2 2 2
(3.26b) 1wi x " K 0.. 2

REMARK 3.3. To assure Assumption VI, one may use Lemma 1.1 which characterizes

solvability. Recalling the notation there, the index r0  in (1.16) equals zero

in the case of the right-sided boundary-scheme (3.26a), since by (1.13) we have

0'-l 0 0. Thus, we may apply the second part of Lema 1.1, replacing the scalar

function Q-,(K) in (1.17) by SI(K) given in (3.3b), to obtain that

4 '" _ _ __"_ __""_ _ _ __... . . ...- _ _
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q

(3.27) S 1 0C) i jc ,ci- F 0 , 0 < il ,
J=0

is a sufficient condition for the solvability of the boundary-scheme (3.25).

In particular, solvability follows for explicit boundary conditions, where

S_l(K) =_ constant.

Before continuing we want to associate with the boundary conditions (3.1)

two concepts - the von Neumann condition and dissipativity - concepts which

were previously associated with the basic scheme (1.8). We will find it quite

attractive to express our forthcoming stability criteria in terms of these

well-understood and easily checkable concepts.

The boundary-scheme (3.25) has the associated characteristic equation

q

(3.28) R0(Z,Kc )-- c (z)K = 0,
J=0

by means of which, satisfying the von Neumann condition and dissipativity make

sense. Upon linking these properties with the boundary-conditions we get:

The boundary conditions (3.1) are said to satisfy the von Neumann condition

if q

(3.29) Ro(Z,K=ei) L cj (z)e' j  0 , Izi > 1, 0 . 1
J=O

and are said to be of dissipative type if

(3.30) Ro(Z,K -ei ) t c,(z)eiJ ,' 0 l. 1, 0 < -
JO,
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We recall that Lemma 2.1 is valid for any solvable scheme. Applying that

lemma for the solvable boundary scheme (3.25), yields the following result.

LEMMA 3.3

For the boundary conditions (3.1) which satisfy the von Neumann condition,

we have for z, IzI -, 1,

(3.31) R0 (z'I) -= c (z)K j  0 0 < JKI 1.J-0

PROOF Take an arbitrary z, IzI > 1 and consider the (polynomial) characteristic

equation (3.28). By Lemma 2.11 all of its non-zero solutions K = K(z)

satisfying IK(z)I 1 1. Thus there are no non-zero solutions of (3.28) in the

closed unit disc, ioe,, (3.31) holds..

REMARK 3.4. In the course of proving Lemma 2.1 we used Assumption I, according

to which ar (z) 0 0 , jzj > 1, r denoting the number of left spatial mesh

points that the basic scheme rests on. As explained in Remark 2.1, this condition

is required in order to assure that multiplying the characteristic equation by

factor Kr does not yield additional zero solutions K = 0. We note that upon

applying Lemma 2.1 for the right-olded boundary scheme (3.25) as done in Lemma 3.3,

we are free from requiring, analogously to Assumption I, that c0 (z) 0 0, 1z14,

r
since the index r is vanished in this case, i.e., K = 1.

By continuity arguments, Lemma 3.3 implies the following immediate result.

COROLLARY 3.3.
For the boundary conditions (3.1) which satist the von Neumann condition,

we have for z, IZ:g 1
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R, ._ o0 1 z, o) , o < J K < l

F'3. By Lemma 3,3, the sciutions, K = j(z, of the characteristic equation

.8) satisfy for z, Iz 1, 1<,(z)l 1.

Hence, for z, Izl , 1, these continuous solutions satisfy K (z)l 1, a.d

the result follows-

Combining the last corollary with Theorem 3.2, we obtain the following scheme-

independent stability criterion of the desired type.

THEOREM 3.3.

The basic scheme (1.8) of dissipative type, together with the boundary

conditions (3.1) which satisfy the von Neumann condition, constitute a stable

approximation to the outflow problem (1.7).

PROOF° Since the boundary conditions (3.1) satisfy the von Neumann condition,

then by Corollary 3.3 we have (3.32) which by the second part of Theorem 3.2

is sufficient for stability.

The last theorem provides a scheme-independent stability criterion for

difference approximations whose basic scheme is limited to be of dissipative type-

We turn now to the general case, of basic schemes which are not necessarily

dissipative. In particular, we refer to the case of non-dissipative schemes

where unlike the dissipative case all z lying on the unit circle may serve as

generAl zed eigenvalues.

THEOREM 3.4&.

The basic scheme (1.8) together ;ith the boundary conditions (3.1) of

dissipative je, constitute a stable approximation to the outflow problem (1.7,.

iI

t~*~ _ _ _ _ __ _ _[
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PROOF Take an arbitrary z with zj . and let (z), 0 K (z) 1, be

any corresponding inner solution, so that

KK33) P(z,K£) t J ) .
--- r

In order to assure stability, it suffices, according to Theorem 3.1, to

show that q
(33)Ro(ZK z= ( 0.

We first note, that since the boundary conditions were assumed to be of

dissipative type, they particularly satisfy the von Neumann condition; so Lemma

3 3 and Corollary 3.3 may apply to our case.

Now, for z-values outside the unit disc, IzI 1, (3.34) follows from

Lemma 3 3, and for an inner solution which is inside the unit circle,

0 1-cZ1 < 1, (3.34) follows from Corollary 3.3.

Therefore, it remains to verify (3.34) for the case that both z and K

are lying on the unit circle, i.e.,

(3.35) z = e'q , 0 .P I * W ; Kt e , 0 .

For an inner solution of the form K, = ei, 0 0, (3.34) follows from the

dissipativity of the boundary conditions (see (3.30)). So let us consider an

inner solution of the form Kt z e il - i.

By Lemma 3.1, upon approximating the outflow problem (1.7), Kt = 1 is

I

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ [i
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excluded as an inner solution corresponding to z = 1; and for the remaining

z-values, z = e , 0 jp0 6 rt, which may be taken into consideration, we have

by (3.33) and by Assumption V

(3.36) IR0(ze i, Yl)l = A(z-e 
i )  0 , 0 (P I

That is, (3.34) is valid also in the remaining case, and stability follows.

Combining Theorem 3.3 and 3.4 we immediately obvain the following summary

result,

COROLLARY 3.4.

Consider the basic scheme (1.8) together with the boundary conditions (3.1)

which satisfy the von Neumann condition, as an approximation to the outflow

problem (1-7). If either the basic scheme (1.8) or the boundary scheme (3.25) is

dissipative, then the approximation is stable.

We note that the stability properties of the boundary scheme, namely,

dissipativity and the von Neumann condition, are often known in advance. Tnus,

in applying the last scheme-independent stability criteria summarized in Corollary

3.4, then beside the four basic assumptions (Assumptions I-IV) which the

approximation is always assumed to satisfy (see Remark 3.1), it remains to verify

the validity of the additional assumptions, Assumptions V and VI.

For the purpose of assuring these assumptions, one may use Lemma 3.2 and

Remark 3.3 which imply in particular that Assumption V is automatically fulfilled

in the case of two-level boundary conditions, and that the solvability assumption

VI is automatically fulfilled in the case of explicit ones.

i-- -"-----.../.-----.-
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Yet, referring to the general multi-leveliimplicit case, then Assumptions

V and VI are indeed necessary for the validity of the scheme-independent

stability criteria given in Theorems 3.3 and 3.4.

Concerning the first of these two, then by Lemma 3.2 it follows that

Assumption V is automatically fulfilled in the two-level casp. When we raise

the question whether stability is maintained also in the general multi-level

case involving more than two time steps, the following example shows that the

answer to that question is negative. That is, Assumption V is indeed a

necessary one.

Consider the non-dissipative Leap-Frog scheme

(3.37a) v (t+At) = v (t-At) +Xa.[v +l(t)-v Vl(t)] ,v 1,2,...,

together with the solvable consistent boundary condition

(3.3Tb) Vo(t+At) = vo(t-At) + 2Xa'[- At-EvtAt

The boundary function associated with (3.37b) is given by

-2.[+ (~)
(3.38) R0 (Zi) = 1 - z [1+2Xa(K-l)]

and its z-roots, z = z(K), satisfy for 0 < Xa < 0.5

(3.39) Iz( c=e"()I 2 (I1-2Xal + 12)aI)2 - 1 , 0 •
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Thus, the explicit (and hence solvable) boundary condition (3.37b) is of

dissipative type; so approximation (3.37) fulfills the requirements of both

Theorem 3.4 and Assumption VI.

At the same time, the approximation (3.37) is unstable. Indeed the

characteristic eouation associated with (3.37a)

P(Z,K) = 1-Z-2z- Xa(K-K - I ) 0,

has exactly one inner root-function, K = K(z), satisfying K(z=-l) = 1

(see [6, Lemma 6.2]), and by inserting it into the boundary-function (3.38),

we get
-2

(3.40) R0 (z=-,K=I) = l-z .[l+2),a(,-l)]IZ=_ 1 = 0.

K=1

Thus, the approximation (3.37), is unstable since it violates the necessary

stability condition (3.4) at the point z = -1.

The instability of approximation (3.37), despite that it fulfills

the requirements of both Theorem 3.4 and Assumption VI, is explained by its

failure to satisfy also Assumption V as follows from (3.38):

(3.41) A(z=e z) - IR0(zinl,,cl)j = o.

We remark that according to Lemma 3.2, the only possibility of the three-level

approximatior (3.37)to violate Assumption V is at the single point z * -1,

as we have indeed found in (3.41).

B ___ ____ _____ _ _
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Concerning the solvability Assumption VI, its necessity can be shown by

considering any two-level 3-point dissipative basic scheme together with zero

order accurate boundary condition of the form

(3.42) v0 (t+At) - Bv 1(Z+At) = v 0(t) - Svl(t), 8 > 1.

The boundary-function associated with (3.42) which is given by

(3.43) R0(Z,K) = (-z-1 )'(l-BK)

satisfies R0 (z,K=e
i ) 0 0 , z > 1, 0 < IC < w, hence by (3.29) the boundary

condition (3.42) satisfies the von Neumann condition and the entire approximation

fulfills the requirements of Theorem 3.3. Furthermore, since the basic scheme

was assumed to be two-leveled, then by Lemma 3.2, Assumption V is fulfilled as well.

Yet, the approximation is unstable since the boundary-function (3.43) vanishes at

z = 1 independently of K-values; hence the necessary stability condition (3.4)

is violated. This instability is explained by the failure of the boundary scheme

associated with (3.42) to be solvable. Indeed, recalling the solvability definition

in (3.26), then by taking T E 0 in (3.26a) we find that the grid function

w =8-Vw 0 E=r+l£2(x) with arbitrary w0 , satisfies Sl wV - w -Bw,+ = 0, v,-r+l.

Thus, we have neither the uniqueness nor the boundedness which is required in

(3.26b).

Our study of the outflow problem is completed, and we turn now to discuss
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some remarks concerning the inflow one,

We first note that all the results which wcre discussed in previous sections

go over unchanged except for Lemma 3.1. The result of this lemma discussing the

behavior of inner solutions in the neighbourhood of z = 1, depends on whether we

approximate the outflow problem or the inflow one.

In the outflow case, Lemma 3.1 is used to exclude the possibility of K. = 1

to serve as an inner solution corresponding to z a 1. In the inflow case,

however, the- situation is just the contrary; that is, according to Lemma 3.1, z = I

has always exactly one corresponding inner solution K, = 1.

Now, we recall that all our stability criteria, particularly the scheme-

independent ones, were obtained by applying Theorem 3.1 which characterizes

stability by requiring that for every t with I'd > 1 and-every corresponding

inner solution K, = KZ(z),.1 . t < n, we have R 0(zc ) # 0.

We therefore conclude that when dealing with the.inflow problem, &il our

previous stabliity., criteria still hold upon making the additional requirement

R 0(z-l,)CL=l) 0 0,

a requirement which was automatically excluded by Lemma 3.1, in the outflow case.

Thus for example, referring to the summary result in Corollary 3.4, we obtain

for thq inflow problem

COROLLARY 3.5.

Consider the basic scheme (1.8),together with the boundary conditions (3.1)

which satisfy the von Neumann condition, as an approximation to the inflow problem

-
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(1.7). If either the basic scheme (1.8) or the boundary scheme (3.25) is

dissipative and if in addition we have

(3.42) R0 (z=l,K=l) 0 0,

then the approximation is stable.

We note that when the additional condition (3.42)

q

R O(ZK)IZ=K!l c(Z)Iz=l 00

holds, then according to (l.10a) the boundary conditions must be inconsistent

and in fact have no accuracy with respect to the differential equation. This

indeed makes sense since one cannot expect the stable approximation (1.8), (3.1)

whose values are uniquely determined in the quarter-plane x, t , 0, to be

consistent with the inflow problem (1.7) which is not uniquely determined unless

extra boundary data is supplied as given in (l.Tb). Thus in general, consistent

boundary conditions of translatory type approximating the outflow problem are

of no value when dealing with the inflow one. Yet, there is one important case

which we shall now consider. That is, when the missing boundary values are

computed via summations of the form (see [7, Theorem 6])

q

(3.4h3) " vp+j(t) = g (t), gut)E12 (t), V -- 0,-l,...,-r+l.J=0

For the purpose of determining stability, we consider the boundary-function

A ___ _ i
t .
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q

associated with the homogeneous part of (3.43), which is given by RK) = K )c

J=0

We have R 0(K) 0 0 for all K 0 0 and hence by Corollary 3.1, the stability

of both the outflow and particularly the inflow approximation (1.8), (3.43)

is assured. Setting q to be zero, we obtain the well-known result [7], [10]

of the unconditional stability of the approximation whose boundary values are

determined by arbitrary bounded inhomogeneous terms v (t) g (t)

u = 0,-l,...,-r+l. Indeed, this result was mentioned earlier in Section 1.1,

where it was used to assure the unconditi~nal stability of the inflow scalar

components of the vector approximation (1.5), (1.3).
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4. EXAMPLES OF SCHEME-INDEPENDENT STABILITY INVESTIGATIONS.

In this chapter we study some examples of translatory boundary conditions

which together with corresponding basic schemes constitute stable approximations

to the outflow problem (1.7).

For that purpose, we apply the scheme-independent criteria of the previous

chapter, so that stability is not restricted to a specific basic scheme. That

is, the acquired stability is valid for a family of approximations which consists

of the boundary conditions together with any basic scheme having some general

property (the "familial" property) such as dissipativity, two-levelness, etc.

REMARK 4.1. It is of course understood that beside requiring the basic schemes

to satisfy some general ("familial") property which follows from the scheme-

independent stability analysis, all basic schemes considered must satisfy the

four basic assumptions, Assumptions I-IV (see Remark 3.1). In particular, we

refer to the stability assumption, Assumption III, which may lead to impose some

restriction on the time step used At.

We note that the stability criteria given in Theorems 3.3 and 3.4 are

independent of the index r, which denotes the number of boundary values to be

computed at each time level v (t), = O,-l,...,-r+l. Hence, verifying the

stability in the simpler case of computing a single boundary value, v0(t),

(complementing for example, a 3-point basic scheme) requires no more effort than

the stability verification in the general translatory case of r boundary values,

1, complementing a basic scheme of the general form (1.8).

The above observations are particularly relevant to those boundary treatments

2 1_ _ _ _-__
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which are considered below, and whose stability is already discussed in the

literature. However, the verification of stability given below has two specific

features: first, because the stability investigation is independent of the basic

scheme and of the solutions of the corresponding characteristic equation, then

the procedure becomes much shorter; secondly, the translatory nature of the

boundary treatment assures that the acquired stability is valid for any basic

stable scheme and not necessarily for 3-point ones.

Let us turn then to the examples themselves, and consider first boundary

conditions which complement any dissipative basic scheme.

EXAMPLE 4.1. (example (6.11) in [6]). Let the boundary conditions be determined

by oblique Lagrangian extrapolation of order m-l:

m

(4.la) v (t+At) = 7 (m)(-1 )J+i v Et-(J-l)At] , u = O,-l,...,-r+l.J--

The boundary-function associated with (4.1a) is given by

m
(4.1b) Ro(zc) = 1- 5 (m)(-l)l -JICJ

and by equating to zero, we get that the z-solutions of (4.lb) satisfy

Iz(Ke")l - le"I - 1 , V&.

Thus, the explicit and hence (by Remark 3.3) solvable boundary conditions (4.1a)

are of non-dissipative type so they satisfy the von Neumann condltlon. According

(I, _ _ _ _ _ _ _ _ _ _ v .. .
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to (4.1b) we also have Z(Kl) = 1, SO A(ze) I ! 0 (z=e ~o' iC=l)1'0, 0-kIlir,

i.e., Assumption V is valid and stability follows by Theorem 3.3.

EXAMPLE 4.2. (example (6.3c) in [61, example (3.4) in [14]). Let the boundary

conditions be generated by the Box-Scheme, i.e.,

(4.2a) v 11(t+At) + v, +(t+At) - Aa.[v,+(t+At) -v (t+At)]

= V VtW + v~j1 (t) + Xa*[v ,+(t)-v Ii(t)] , 0ia =.-rl

The boundary-function associated with (4.2a) is given by

(4.2b) R 0(Z,) = 1+ic-Xa(,c-l) - Z-1 1KX(-)

mr., by equating to zero, we get that its z-solutions satisfy

IZ(Kce '&)I = ____________I _ =& 1 ,

Thus, boundary conditions (4.2.) are of non-dissipative type so they satisfy

the von Neumann condition. Approximating the outflow problem (a>O) we have

Re[S1 (c)) - l+Re('c) + Xa.Ei-Re(K)J # 0 , IKcI % 1.

Hence (see Remark 3.3), the boundary conditions (4.2a) are solvable (i.e.,

Assumption VI holds), and since they are also two-leveled then (by Lemsu 3.2)
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Assumption V holds as well. Therefore we may apply Theorem 3.3 obtaining

stability.

In view of the stability discussion in Examples 4.1, 4.2, it follows that

any dissipative basic scheme together with translatory boundary conditions which

are generated by oblique extrapolation or by the Box-Scheme, constitute a stable

approximation to the outflow problem (1.7).

EXAMPLE 4.3. ([2] , example (6.2b) in [15]). Let the boundary conditions be

generated by the right-sided wieghted Euler scheme, i.e.,

v (t+At) = v (t-At) +2Xa.[v +l(t)-0.5"(v (t+At) + vV(t-At))].

= 0,-l,... ,-r+l.

The boundary-function associated with (4.3a) is

(4.3b) Ro(Z,K) = l-z-22a.[K.z-l0.5-(l+z2),

and by equating to zero, we find that its z-solutions are given by

(4.3c) z(K-ei), e& e a±b(E) 9 b(&) - A)a)2+e-21'[l_(Aa)12]

In order to assure stability, we restrict the time-step At by requiring

the Courant-Friedrichs-Levi (CFL) condition
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(h.3d) 0 < Xa < 1.

We note that the CFL requirement (4.3d) is automatically fulfilled in the case

of an explicit basic scheme, since by our Assumption III, the basic scheme must

satisfy the von Neumann condition.

Having (h.3d), it follows that Ib( )j .< 1, 0 .< JEJ 7r. Thus, the explicit

and hence (by Remark 3.3) solvable boundary conditions (4.3a) satisfy the von

Neumann condition

Iz(K=ei X a+l . 1 , YF.

)Xa_+ i(pAccording to (h.3c) we have z(K=l) = -l ei,0
Xa+l e 0 < I(01 n' so

A(z=e ip) > IRo(z=ei, ,K=l)1 > 0, 0 < 1I s w, i.e., Assumption V is valid. We

may apply now Theorem 3.3 to conclude that any approximation to the outflow
(i)

problem (1.7) which satisfies the CFL condition (4.3d) , consisting of a

dissipative basic scheme together with the translatory boundary conditions (4.3a),

is stable.

We turn now to study general difference approximation consisting of any basic

scheme (which is not necessarily of dissipative type) together with the following

boundary treatments.

EXAMPLE 4.4. (example (6.3b) in [6] , example (3.2) in [lh]). Let the boundary

conditions be generated by the right-sided explicit Euler scheme, i.e.,

(4.4a) V (t+At) a v (t) + Xa.[v +l(t)-v (t)], P - 0,-l,...,-r+l.

(1) A further restriction on the time step At may arise from the stability
requirement made in Assumption III (see Remark 4.1).

J1
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The boundary-function associated with (4 .4a) is given by

(4.hb) R0 (z,K) = l-z-l[l+la(i-l)],

and by equating to zero, we get that its z-solutions satisfy

Iz(K=e2 )12 (1-a+Xa.cosC)2  )2 < , 0 II2 <

=+ ( a. sin < (,l- a,+, af), 0

Thus, requiring the CFL condition

(4.4c) 0 < Xa s 1,

we see that the boundary conditions (h.4a) are of dissipative type. Since the

boundary conditions (h.4a) are also explicit and two-leveled then by Lemma 3.2

and Remark 3.3, both Assumptions V and vi are valid and stability follows f pm

Theorem 3,4.

EXAMPLE 4.5. (example (3.3) in [14]). Let the boundary conditions be generated

by the right-sided implicit Euler scheme, i.e.,

(h.5a) v (t+At) -Xa-[v (t+At) - v (t+At)] = v (t) , = -l...,-r+l.

The boundary-function associated with (4.5a) is given by

(4.5b) R0(z,K) 1-Xa(K-l)-z -

411 _____ I:-- - .. .. , ,
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and by equating to zero, we get that its z-solutions satisfy in the outflow case

(a>0)

z( ei&)12 = [(l+Xa-XLa.coc ): (Lu -sin0)2]1- 1 < [ +Xal-lXal] - 1  = l, 0 < I I -

Thus, boundary conditions (4.5a) are of dissipative type. Approximating the

outflow problem (a>O) we have

Re[S__1 )1 = l+Aa.-l-Re(K)] 0 0 , JKJ < 1.

Hence (see Remark 3.3), the boundary conditions (h.5a) are solvable (i.e.,

Assumption VI holds), and since they are also two-leveled then (by Lemma 3.2)

Assumption V holds as well. Therefore we may apply Theorem 3.4 obtaining

stability.

In view of the stability discussion in Examples 4.h and h.5, we may conclude

that if the boundary conditions (3.1) are generated by a stable right-sided

explicit Euler scheme or by the right-sided implicit Euler scheme, then the

entire approximation (1.8), (3.1) is stable.

EXAMPLE 4.6. Let the boundary conditions be of the form

(h.6a) (l+Xa)v (t+At) + (l-Xa)v +l(t+At) =

= 2Xa.[v +l(t)-v (t)] + (l-Aa)v (t-At) + (l+Xa)v +l(t-At)j ji 0,-l,...,-r+l.

( I: ..........
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The boundary-function associated with (4.6a) is

(4.6b) Ro(z,K) = l+Xa+(l-Xa)K-z-].2)a(-l)-z 2 -[(l-Xa) + (l+Xa)K],

and by equating to zero, we find that its z-solutions are given by

(4.6c) z(K=ei )= ai.sinE/2 ± cosC/2
-Aai-sin&/2 + cosE/2

and hence Iz(K=ei ) = 1. Thus, the boundary conditions (4 .6a) are of

non-dissipative type so they satisfy the von Neumann condition. Furthermore,

we have in the outflow case (a>0)

Re[S_1 ()] = +Re() + Aa.[l-Re(K)) 0 0 , jII 1 1,

and hence (see Remark 3.3) boundary conditions are also solvable, i.e., Assumption

VI holds. To assure stability via Theorem 3.3. it then remains to verify

Assumption V.

Now, since by (4.6c) we have z(K=l) * ±I, hence

A(z-eiD) " IR0 (z-eit, K-l) > 0 , 0 < IkI •

and therefore the validity of Assumption V follows upon requiring

A(Z=-l) = IP(Z=-l,K-l)I 0.
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Here, P(z,K) de:. tes as usual, the characteristic function associated with the

basic scheme.

Applying Theorem 3.3 we conclude that the boundary inditions (4.6a), which

complement any dissipative basic scheme whose characteristic function P(z,K)

satisfies

(4.6d) P(z=-l,K=l)

constitute a stable approximation to the outflow problem (1.7).

Since by Lemma 2.2T condition (4.6d) which may be rewritten in the form

t a (z=-l) # 0
J -r

is automatically fulfilled in the two-level case, we obtain that stability

follows whenever the boundary conditions (4 .6a) complement any two-level

dissipative basic scheme. We note, however, that in the general case of multi-

level basic schemes involving more than two time-steps, the additional requirement

(4.6d) is indeed a necessary one as shown by the following example;

Consider the three-leveled dissipative scheme (see (3.24))

(4.7a) N (t+At) = [I - -E-I)2(l-E-l)2IV (t-At) + Xa(E-E-1 )v (t),
V V

v = 1,2,..., Xa ., l-E, E < 1,

and let the boundary value v0(t+At),v 1 (t+At) be computed by (4.6a), i.e.,

4.
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(h.7 (l +a)v (t+At) + (l-Xa)v +l(t+At' =

2Xa-[V+l (t)-v (t)] + (l-Xa)v (t-At) + (1+xa)v J+(t-At), u = 0,-i.

The characteristic equation associated with the basic scheme (4.Ta), has

exactly one inner root function K = K(z) satisfying K(z=-l) = 1, and by

inserting into the associated boundary-function we get

Ro (z=-, K-l) = l+Xa-(l-Xa)K-z- .2Xa(i-l)-z-2.[(l-Xa)+(l+a)I l 0.

Thus, approximation (4.7) is unstable due to the violation of the necessary

stability condition (3.4) at the point z = -1.

Recalling the summary result which follows Example 4.6, we find that

approximation (4.7) satisfies all the required hypothesis except for condition

(4.6d). Indeed, we have

(4.7T) P'z=-lK=i) = 
]

-z 1  -l 2 .E2(12
lt z=-i

We remark that according to Lemma 3.2, z = -1 is the only possible point for the

throe-level basic scheme (4.7a) to violate Assumption V, as we have indeed found

in (4.7c).

We close this chapter by considering differen,:e approximations to the two

apace dimensfinal problem

W -V- -... ..
, . .p ,.,m m m m m mm umm m m m lml lmm mm 

m
m
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3u(x,y,t)/Dt = aau(x,y,t)/)x + bau(x,y,t)/ay , a > 0 ; u(x,y,20 = f(x,y),

in the quarter space x > 0, t > 0, -- < y < . "he analysis of such initial-

boundary problems in both the differential case (see [9]) and the difference

case (see for example [1]) can be carried out by Fourier transforming with

respect to the variable y; thus obtaining a one space dimensional problem of

the type analyzed in the previous chapters. To be more precise, let Ax, Ay

be the spatial mesh width such that X = At/Ax = constant,x

Ay - At/Ay = constant and denote by v V,(t) - v(vAx,CAy,t) the approximated

grid function. Then, Fourier transforming in the y-direction (with dual

variable n) and Fourier-Laplace transforming with respect to the time-variable

leads one to search for normal modes of the form v (t) = znKJe i
.

n . UponVC

substituting such modes as a grid solution for a given difference scheme,

we obtain the corresponding characteristic equation. If in particular the scheme

is the one generates the translatory boundary conditions considered, we obtain

the associated boundary-function which determines the stability properties of

these conditions. Both the characteristic and boundary functions involved in

the two space dimensional case are dependent on the extra parameter n, and

our former results are still valid in this case since all estimates made are

uniform..in n (see [6],[8]). The only exception is that of Lemma 3.1, according

to which the pon.ibility of K = 1 to serve as an inner solution corresponding

to z = 1, is excluded in the outflow case (a>O). The proof of Lemma 3.1 is

based on the consistency condition, so i validity in the two space dimensional

case is restricted to the single point n = 0. Therefore, for the result of

U '-~ .- -¢. ............... ..
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Lemma 3. 1 to be valid independently of the extra parameter n, the additional

requirement

(48) R0(z=l,K-l,n) # 0 , 0 < I,, $ 7,

must be fulfilled. Thus, to apply our scheme-independent stability criteria for

a two space dimensional approximation, we first determine the boundary stability

properties by employing the associated boundary-function. Then it remains to

check whether the approximation meets the additional assumptions V and VI, and

whether condition (4.8) is fulfilled.

We note that when verifying the validity of Assumption V in the two space

dimensional case, one may no longer use Lemma 3.2 in which conditions for

the validity of Assumption V for twc-and three-leveled schemes, are discussed.

Indeed, the lemma follows from Lemma 2.2 whose proof is based on the zero order

accuracy condition, i.e., when dealing with the boundary conditions we have

R0 (z=l,,=l,n=0) = 0. Thus, the conclusions of Lemma 2.2 and Lemma 3.2 hold

only in the neighbourhood of n - 0 and are not necessarily valid for all n,

o s nI '< V.

EXAMPLE 4.7. Let the boundary conditions be generated by the right-sided explicit

Euler scheme,i.e.,

v ,;(t+At) = v (t) + Xxa.Lv +l, (t)-v ,9(t)] + y b'[v , +l(t)-v V(t)]

(14.9a)
0 O-1,..-r+l,- < <.
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The boundary-function associated with (4.9a) is given by

(4.9b) Ro(z ,9c,n) = I -z-l[1+A a.(-1-l)+. b(ei-l)]
[Xx y

-1 h]y equatin- to : , j. r,-t t'it it .";- olutions satisfy

z(Keizn)I2= (1-) a-A b+X abcosn) 2 -1- (X a'sin+X b.<in)
x Y X y x y

(4.9c)

I,1-- x a-b y b + I x a+ y bI) IT ,, ,1 .,

Then, upon imposing the CFL conriti:,

(4.9d) < \ a + A b 1 1x y

we see that the explicit and hence (by Remark 3.3) solvable boundary conditions

(4.9a) are of dissipative type. By (4.9d) it follows that in the outflow ease

(a>O) we have X b $ 1, hence

Iz(K=1,n)1 2 = (1-A b+X b-cosn) 2 + (A b.sinn) 2 <l-Xy bl+IX bl= 1,

(h.9e)
0 < Tri , T

so condition (4.8) is fulfilled. Consistency implies that z(il,n-0) 1 1 (see

(4.9e)) and together with (4.9e) we finally get

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __IHIIIII~n-
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A(z=e iLn) , IR 0(z=ei' ,I ln)l > 0 , 0 < .< : , 0 ." -n < :

i.e., Assumption V holds. Therefore we may apply Theorem 3.4 coneluding that

if the CFL condition (4.9d) is fulfilled then the outflow boundary conditions

(4.9a) always maintain stability independently of the interior scheme.

Boundary conditions (4.9a) are generated by an obvious extension of the usual

one space dimensional right-sided Euler scheme discussed in FxamDle 4.4. Another

possible extension is given by (see example (2.5) in [I])

v (t+At) = V (t) + A a.Ev (t)-v (t] + 0.5.X b-[v (t)-v (t)],

lj' ~~ ul XilY l+l

(4.10a)

These boundary conditions are unstable in the sense that the z-solutions of the

associated boundary-function

(4.10') Ro(Z,K,n-) = 1-z-1 .(Xa(K-l) * iky b.sinn],

satisfy

(h.lOc) Iz(K=ei&,n)12= (laa.cos )2 +( Xa.sin& + Ayb-sinn) 2 ,

hence IZ(,Ke iE' n =) 12 1 + (I bein,)2 > 1, a' r II s w . Thus, boundary

(i) A further restriction on the time step At mar arise from the stability
requirement made in Assumption III (see Remark 4.l),

4w ~ .____ _ __ ____ _ __ ___
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conditions (4 .10a) fail to satisfy the von Neumann condition for all n, O.Inl51

and our scheme-independent stability criteria are inapplicable in this case.

The question of stability is, in this case, dependent on the basic scheme utilized.

A further possibility to extend the one space dimensional Euler scheme (h.4a)

is considered in the following example.

EXAMPLE 4.8. (example (2.6) in Ei]). Let the boundary conditions be of the form

v ,1 (t+At) = v (t) + 0.5.Xa. [(Va l,+l(t)+v +l, (t))-(v ,C+l(t)+v U(t) +

(4.11a)

+ 0.5.Ayb • [(v +l, +l(t)+v U,+l(t))-(v +l,c(t)+v 1C(t))],

:d OY .. ,rl -00 < < ..

To simplify the computations we shall cotsider the case whe't X a = y b. Thex y

boundary-function associated with (4.11a) is given by

and by equating to zero we get that its z-solutions satisfy

(4 .llc) Iz(K=ei&,n)I2 = [I-A a+A a-cos(F,+b)] 2 + [X a.sin(&+n)]2 <

x x x

Then, upon imposing the CFL condition

,,,.
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(< 1!rI) A A a = X b < 1
x y

we sce that the explicit and hence (by nerark 3.3) solvable boundary conditions

." vni i -/' nmiri c nn i tion. .-, . (h.( 1.) wo have

S-l,nl 12 = (1 a+A a.cosn)2 + (Xxa. sinn)
2 < (11-xaI . x al 2 =

(.. LIe)

0 < I .

and hence condition (4.8) is fulfilled. Consistency implies that

z(K=1,n'=) = 1 (see (h.lle)) and together with (h.lle) we finally get

A(z=ei' ,n) >. B0 (z=ei"p,, i,n)f > 0 , 0 " 10 s W, 0 . InI < W,

i.e., Assumption V holds. Therefore we may apply Theorem 3.3 concluding that

if the CFL condition (4.11d) is fulfilled,' ) then the outflow boundary conditions

(4.11a) in conjunction with any dissipative basic schme constitute together a

stable approximation.

In the manner of the last two examples, one may consider various two space

dimensional boundary treatments which extend the corresponding one space

dimensional ones. We choose to consider an example which is based on extrapolation.

EXAMPLE 4.9. (example (2.4) in [1)). Let the boundary conditions be determined

(1) A further restriction on the time step At may arise from the stability
requirement made in Assumption III (see Remark 4.1).

..m1I imj mlmmmm .mm
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by oblique extrapolation along the characteristic plane (see Example 4.1), i.e.,

m
(4.1l2a' ,rjrt+At) = E- )-lJi [t-(J-l)At], 0-,.-~,-

The boundary-function associated with (h.12a) is given by

m

(.12)) = I - T (n)(-l)J+ilz-JJeij - (-z-1cei n )m

J=l

and by equating to zero we get that its z-solutions satisfy

(4lc z(ice~ ,r)I - e 1, 0 InjH

Thus, the explicit and hence (by Remark 3.3) solvable boundary conditions (4.12a)

are of non-dissipative type so they sati,! ' the von Neumann condition. In

addition we have

R0 (z1,=l,n) a (1-e ) # 0 , 0 < ,

i.e., condition (4.8) is fulfilled. Thus to assure stability via Theorem 3.3, it

then remains to verify Assumption V. Since by (4.12b) we have

R0 (z=ei , -,n) - (l-eA- ei-) ,, - 0,

the assumption is reduced in this case to the requirement
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i(P i(P <(4~.12d) t ,ri) IP z=e Ki=l ,n)l > 0, 0 < ~ ,0 tnt I,

P(z,<,rn) denoting as usual the corresponding characteristic function associated

with the basic scheme.

Applying Theorem 3.3 we conclude that the extrapolatory outflow boundary

co~nditions (4.12a), when complementing any dissipative basic scheme wvhose

characteristic function P(z,ic,n) satisfies P(z-e 'tp, K=l,n) #0, O<pI(PIr,

oIj zconstitute a stable approximation.



- 83 -

REFER;CES

[1] 2. :arbanel and D. Gottlieb, Stability of two dimensional initial boundary
value problems using Leap Frog type schemes, Dept. of Math. Sciences,
Tel-Aviv Univ. Rep., 1977.

[2] T. Elvins and A. Sundstrdm, Computatiunally efficient schemes and boundar
con-ditions for a fine-mesh barotropic model based on the shallow-water
equations, Tellus, v. 25, 1973, pp. 132-156.

[L] 'I. Goldberg, On a boundary extrapolation theorem by Kreiss, Math. Comp.,
v. 31, 1977, pp. 469-477.

[h] A. Goldberg and E. Tadmor, Scheme-independent stability criteria for
differ-nce approximations of hyperbolic initial-boundary value problems, I,
Math. Comp., v. L, 1978, pp. 1097-1107.

[5] B. 3ustafsson, On the convergence rate for difference approximations to i,-ixed
initial boundary value problems, Math. Comp., V. 29, 1975, pp. 396-406.

[6] B. Gustafsson, E.O. Kreiss and A. Sundstr5m, Stability theory of difference
annroximations for mixed initial-boundary value problems. II, Math. Comp.,
v. 26, 1972, pp 649-686.

[71 H.O. Kreiss, Difference approximations for hyperbolic differential equations,
Proc. Sympos. Univ. of Maryland, Maryland, Acad. Press, New York, 1966, PP.51-58.

[] 11.0. Kreiss, Stability theory for difference approximations of mixed initial
boundary value problem. I. Math. Comp., v. 22, 1968, pp. 703-714, MR 39#2355.

[9] H.O. Kreiss, Initial boundary value problems for hyperbolic systems, Comm.
Pure. Appl. Math., v. 23, 1970, pp. 277-298.

[10] H.O. Kreiss and E. Lundqvist, On difference approximations with wrong boundary
values, Math. Comp., v. 22, 19678, pp. 1-12.

11] H.O. Kreiss and J. Oliger, Methods for the approximate solution of time
dependent problems, GARP publication series No. 10, 1973.

[12] S. Osher, Stability of parabolic difference approximations to certain mixed
initial boundary value problems, Math. Comp., v. 26, 1972, pp. 13-39.

[13] R.D. Richtmyer and K.W. Morton, Difference Methods for Initial Value Problems,
Interscience, New York, 1967.

[14] G. Sk~llermo, How the boundary conditions affect the stability and accuracy of

I



- 89 -

some implicit methods for hyperbolic equations, Rep. No. 62, 1975, Dept. of
Comp. Sci. Uppsala Univ., Uppsala, Sweden.

[15] G. Skilernm, Error analysis for the mixed initial boundary value problem
for hyperbolic equations, Rep. No. 63, 1975, Dept. of Comp. Sci., Uppsala
Univ., Uppsala, Sweden.

[i61 i. Strang, Implicit difference methods for initial-boundary value problems,

J. Math. Anal. Appl., v. 16, 1966, pp. 188-198.



FILMED

ITI
- 1af~


